Info

Beast Fitness Radio's Podcast

Beast Fitness Radio is an educational based bodybuilding podcast that heavily emphasizes research and anecdotal evidence as it relates to physique enhancement!
RSS Feed
Beast Fitness Radio's Podcast
2021
August
July
June
May
April
March
February
January


2020
December
November
October
September
August
July
June
May
April
March
January


2019
December
November
October
September
August
July
June
May
April
March
February
January


2018
December


All Episodes
Archives
Now displaying: Page 1
Nov 3, 2020

Episode 347 is an updated guide to somatropic hormone and GOD did I go crazy on this one! I honestly want to know more about growth hormone than anyone alive and thus, begins this string of GH based guides! I DID finally discuss the MoA for how GH causes localized fat loss which really had me excited since no one in our industry has EVER talked about this so that definitely was an interesting avenue to go down!

Below I am going to reference a lot of the literature for this hormone that I was read through over the past few years on this topic so please DO NOT TAKE MY WORD FOR THIS - READ THESE YOURSELF! Keep in mind this is a brief snippet of every bit of literature on the topic however.

REFERENCES

 

  • Daughaday WH, Rotwein P. Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev. 1989;10:68–91. [PubMed] [Google Scholar]
  • Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995;16:3–34. [PubMed] [Google Scholar]
  • Le Roith D, Bondy C, Yakar S, Liu JL, Butler A. The somatomedin hypothesis: 2001. Endocr Rev. 2001;22:53–74. [PubMed] [Google Scholar]
  • Melmed S. Endocrinology. 5th edn. Philadelphia: Elsevier Saunders; 2006. pp. 411–428. [Google Scholar]
  • Fain, J. N., García‐Sáinz, JA. (1983) Adrenergic regulation of adipocytes metabolism. J Lipid Res 24: 945– 966. CAS PubMed Web of Science®Google Scholar 
  • Gilman, AG. (1987) G protein: transducer of receptor‐generated signals. Annu Rev Biochem 56: 615– 649. Crossref CAS PubMed Web of Science®Google Scholar 
  • Jimenez, M., Lèger, B., Canola, K., et al (2002) Beta(1)/beta(2)/beta(3)‐adrenoceptor knockout mice are obese and cold‐sensitive but have normal lipolytic responses to fasting. FEBS Lett 530: 37– 40. Wiley Online Library CAS PubMed Web of Science®Google Scholar 
  • Birnbaumer, L., Abramowitz, J., Brown, AM. (1990) Receptor‐effector coupling by G proteins. Biochim Biophys Acta 1031: 163– 224. Crossref CAS PubMed Web of Science®Google Scholar 
  • Spiegel, A. M., Shenker, A., Weinstein, LS. (1992) Receptor‐effector coupling by G‐protein: implications for normal and abnormal signal transduction. Endocr Rev 13: 536– 565. Crossref CAS PubMed Web of Science®Google Scholar 
  • Beebe, S. J., Holloway, R., Rannels, R. S., Corbin, JD. (1984) Two classes of cAMP analogs which are selective for the two different cAMP‐binding sites of type II protein kinase demonstrate synergism when added together to intact adipocytes. J Biol Chem 269: 3539– 3547. PubMed Google Scholar
  • Frank RN. Diabetic retinopathy. N Engl J Med. 2004;350:48–58. [PubMed] [Google Scholar]
  • Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like signals. Science. 2003;299:1346–1351. [PubMed] [Google Scholar]
  • Ibrahim YH, Yee D. Insulin-like growth factor-I and cancer risk. Growth Horm IGF Res. 2004;14:261–269. [PubMed] [Google Scholar]
  • Laban C, Bustin SA, Jenkins PJ. The GH-IGF-I axis and breast cancer. Trends Endocrinol Metab. 2003;14:28–34. [PubMed] [Google Scholar]
  • Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 2008;8:915–928. [PubMed] [Google Scholar]
  • Mayo KE. A little lesson in growth regulation. Nat Genet. 1996;12:8–9. [PubMed] [Google Scholar]
  • Rosenfeld RG, Rosenbloom AL, Guevara-Aguirre J. Growth hormone (GH) insensitivity due to primary GH receptor deficiency. Endocr Rev. 1994;15:369–390. [PubMed] [Google Scholar]
  • Goddard AD, Covello R, Luoh SM, Clackson T, Attie KM, Gesundheit N, Rundle AC, Wells JA, Carlsson LM. Mutations of the growth hormone receptor in children with idiopathic short stature. The Growth Hormone Insensitivity Study Group. N Engl J Med. 1995;333:1093–1098. [PubMed] [Google Scholar]
  • Abuzzahab MJ, Schneider A, Goddard A, Grigorescu F, Lautier C, Keller E, Kiess W, Klammt J, Kratzsch J, Osgood D, Pfaffle R, Raile K, Seidel B, Smith RJ, Chernausek SD. IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N Engl J Med. 2003;349:2211–2222. [PubMed] [Google Scholar]
  • Woods KA, Camacho-Hubner C, Savage MO, Clark AJ. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N Engl J Med. 1996;335:1363–1367. [PubMed] [Google Scholar]
  • Lupu F, Terwilliger JD, Lee K, Segre GV, Efstratiadis A. Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev Biol. 2001;229:141–162. [PubMed] [Google Scholar]
  • Powell-Braxton L, Hollingshead P, Warburton C, Dowd M, Pitts-Meek S, Dalton D, Gillett N, Stewart TA. IGF-I is required for normal embryonic growth in mice. Genes Dev. 1993;7:2609–2617. [PubMed] [Google Scholar]
  • Sotiropoulos A, Ohanna M, Kedzia C, Menon RK, Kopchick JJ, Kelly PA, Pende M. Growth hormone promotes skeletal muscle cell fusion independent of insulin-like growth factor 1 up-regulation. Proc Natl Acad Sci U S A. 2006;103:7315–7320. [PMC free article] [PubMed] [Google Scholar]
  • Fernandez AM, Dupont J, Farrar RP, Lee S, Stannard B, Le Roith D. Muscle-specific inactivation of the IGF-I receptor induces compensatory hyperplasia in skeletal muscle. J Clin Invest. 2002;109:347–355. [PMC free article] [PubMed] [Google Scholar]
  • Coleman ME, DeMayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ. Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem. 1995;270:12109–12116. [PubMed] [Google Scholar]
  • Barton-Davis ER, Shoturma DI, Musaro A, Rosenthal N, Sweeney HL. Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci U S A. 1998;95:15603–15607. [PMC free article] [PubMed] [Google Scholar]
  • Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001;3:1014–1019. [PubMed] [Google Scholar]
  • Musaro A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet. 2001;27:195–200. [PubMed] [Google Scholar]
  • Barton ER, Morris L, Musaro A, Rosenthal N, Sweeney HL. Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol. 2002;157:137– 148. [PMC free article] [PubMed] [Google Scholar]
  • Caroni P, Schneider C. Signaling by insulin-like growth factors in paralyzed skeletal muscle: rapid induction of IGF1 expression in muscle fibers and prevention of interstitial cell proliferation by IGF-BP5 and IGF-BP4. J Neurosci. 1994;14:3378–3388. [PMC free article] [PubMed] [Google Scholar]
  • Edwall D, Schalling M, Jennische E, Norstedt G. Induction of insulin-like growth factor I messenger ribonucleic acid during regeneration of rat skeletal muscle. Endocrinology. 1989;124:820–825. [PubMed] [Google Scholar]
  • DeVol DL, Rotwein P, Sadow JL, Novakofski J, Bechtel PJ. Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am J Physiol. 1990;259:E89–E95. [PubMed] [Google Scholar]
  • Carson JA, Nettleton D, Reecy JM. Differential gene expression in the rat soleus muscle during early work overload-induced hypertrophy. FASEB J. 2002;16:207–209. [PubMed] [Google Scholar]
  • Waters MJ, Hoang HN, Fairlie DP, Pelekanos RA, Brown RJ. New insights into growth hormone action. J Mol Endocrinol. 2006;36:1–7. [PubMed] [Google Scholar]
  • Herrington J, Carter-Su C. Signaling pathways activated by the growth hormone receptor. Trends Endocrinol Metab. 2001;12:252–257. [PubMed] [Google Scholar]
  • Lanning NJ, Carter-Su C. Recent advances in growth hormone signaling. Rev Endocr Metab Disord. 2006;7:225–235. [PubMed] [Google Scholar]
  • Rotwein P, Thomas MJ, Harris DM, Gronowski AM, LeStunff C. Nuclear actions of growth hormone: an in vivo perspective. J Anim Sci. 1997;75:11–19. [Google Scholar]
  • Herrington J, Smit LS, Schwartz J, Carter-Su C. The role of STAT proteins in growth hormone signaling. Oncogene. 2000;19:2585–2597. [PubMed] [Google Scholar]
  • Levy DE, Darnell JEJ. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3:651–662. [PubMed] [Google Scholar]
  • Gronowski AM, Rotwein P. Rapid changes in nuclear protein tyrosine phosphorylation after growth hormone treatment in vivo. Identification of phosphorylated mitogen-activated protein kinase and STAT91. J Biol Chem. 1994;269:7874–7878. [PubMed] [Google Scholar]
  • Gronowski AM, Zhong Z, Wen Z, Thomas MJ, Darnell JEJ, Rotwein P. In vivo growth hormone treatment rapidly stimulates the tyrosine phosphorylation and activation of Stat3. Mol Endocrinol. 1995;9:171–177. [PubMed] [Google Scholar]
  • Ram PA, Park SH, Choi HK, Waxman DJ. Growth hormone activation of Stat 1, Stat 3, and Stat 5 in rat liver. Differential kinetics of hormone desensitization and growth hormone stimulation of both tyrosine phosphorylation and serine/threonine phosphorylation. J Biol Chem. 1996;271:5929–5940. [PubMed] [Google Scholar]
  • Campbell GS, Meyer DJ, Raz R, Levy DE, Schwartz J, Carter-Su C. Activation of acute phase response factor (APRF)/Stat3 transcription factor by growth hormone. J Biol Chem. 1995;270:3974–3979. [PubMed] [Google Scholar]
  • Smit LS, Vanderkuur JA, Stimage A, Han Y, Luo G, Yu-Lee LY, Schwartz J, Carter-Su C. Growth hormone-induced tyrosyl phosphorylation and deoxyribonucleic acid binding activity of Stat5A and Stat5B. Endocrinology. 1997;138:3426–3434. [PubMed] [Google Scholar]
  • Smit LS, Meyer DJ, Billestrup N, Norstedt G, Schwartz J, Carter-Su C. The role of the growth hormone (GH) receptor and JAK1 and JAK2 kinases in the activation of Stats 1, 3, and 5 by GH. Mol Endocrinol. 1996;10:519–533. [PubMed] [Google Scholar]
  • Gebert CA, Park SH, Waxman DJ. Regulation of signal transducer and activator of transcription (STAT) 5b activation by the temporal pattern of growth hormone stimulation. Mol Endocrinol. 1997;11:400–414. [PubMed] [Google Scholar]
  • Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G, Ihle JN. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell. 1998;93:841–850. [PubMed] [Google Scholar]
  • Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, Waxman DJ, Davey HW. Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci U S A. 1997;94:7239–7244. [PMC free article] [PubMed] [Google Scholar]
  • Kofoed EM, Hwa V, Little B, Woods KA, Buckway CK, Tsubaki J, Pratt KL, Bezrodnik L, Jasper H, Tepper A, Heinrich JJ, Rosenfeld RG. Growth hormone insensitivity associated with a STAT5b mutation. N Engl J Med. 2003;349:1139–1147. [PubMed] [Google Scholar]
  • Hwa V, Little B, Adiyaman P, Kofoed EM, Pratt KL, Ocal G, Berberoglu M, Rosenfeld RG. Severe growth hormone insensitivity resulting from total absence of signal transducer and activator of transcription 5b. J Clin Endocrinol Metab. 2005;90:4260–4266. [PubMed] [Google Scholar]
  • Rosenfeld RG, Belgorosky A, Camacho-Hubner C, Savage MO, Wit JM, Hwa V. Defects in growth hormone receptor signaling. Trends Endocrinol Metab. 2007;18:134–141. [PubMed] [Google Scholar]
  • Thompson BJ, Shang CA, Waters MJ. Identification of genes induced by growth hormone in rat liver using cDNA arrays. Endocrinology. 2000;141:4321–4324. [PubMed] [Google Scholar]
  • Flores-Morales A, Stahlberg N, Tollet-Egnell P, Lundeberg J, Malek RL, Quackenbush J, Lee NH, Norstedt G. Microarray analysis of the in vivo effects of hypophysectomy and growth hormone treatment on gene expression in the rat. Endocrinology. 2001;142:3163–3176. [PubMed] [Google Scholar]
  • Rowland JE, Lichanska AM, Kerr LM, White M, d'Aniello EM, Maher SL, Brown R, Teasdale RD, Noakes PG, Waters MJ. In vivo analysis of growth hormone receptor signaling domains and their associated transcripts. Mol Cell Biol. 2005;25:66–77. [PMC free article] [PubMed] [Google Scholar]
  • Huo JS, McEachin RC, Cui TX, Duggal NK, Hai T, States DJ, Schwartz J. Profiles of growth hormone (GH)-regulated genes reveal time-dependent responses and identify a mechanism for regulation of activating transcription factor 3 by GH. J Biol Chem. 2006;281:4132–4141. [PubMed] [Google Scholar]
  • Vidal OM, Merino R, Rico-Bautista E, Fernandez-Perez L, Chia DJ, Woelfle J, Ono M, Lenhard B, Norstedt G, Rotwein P, Flores-Morales A. In vivo transcript profiling and phylogenetic analysis identifies suppressor of cytokine signaling 2 as a direct signal transducer and activator of transcription 5b target in liver. Mol Endocrinol. 2007;21:293–311. [PubMed] [Google Scholar]
  • Clodfelter KH, Holloway MG, Hodor P, Park SH, Ray WJ, Waxman DJ. Sex-dependent liver gene expression is extensive and largely dependent upon signal transducer and activator of transcription 5b (STAT5b): STAT5b-dependent activation of male genes and repression of female genes revealed by microarray analysis. Mol Endocrinol. 2006;20:1333–1351. [PubMed] [Google Scholar]
  • Jorgensen JO, Jessen N, Pedersen SB, Vestergaard E, Gormsen L, Lund SA, Billestrup N. GH receptor signaling in skeletal muscle and adipose tissue in human subjects following exposure to an intravenous GH bolus. Am J Physiol Endocrinol Metab. 2006;291:E899–E905. [PubMed] [Google Scholar]
  • Nielsen C, Gormsen LC, Jessen N, Pedersen SB, Moller N, Lund S, Jorgensen JO. Growth hormone signaling in vivo in human muscle and adipose tissue: impact of insulin, substrate background, and growth hormone receptor blockade. J Clin Endocrinol Metab. 2008;93:2842–2850. [PubMed] [Google Scholar]
  • Waxman DJ, O'Connor C. Growth hormone regulation of sex-dependent liver gene expression. Mol Endocrinol. 2006;20:2613–2629. [PubMed] [Google Scholar]
  • Wauthier V, Waxman DJ. Sex-specific early growth hormone response genes in rat liver. Mol Endocrinol. 2008;22:1962–1974. [PMC free article] [PubMed] [Google Scholar]
  • Ahluwalia A, Clodfelter KH, Waxman DJ. Sexual dimorphism of rat liver gene expression: regulatory role of growth hormone revealed by deoxyribonucleic Acid microarray analysis. Mol Endocrinol. 2004;18:747–760. [PubMed] [Google Scholar]
  • Zhou YC, Waxman DJ. Cross-talk between janus kinase-signal transducer and activator of transcription (JAK-STAT) and peroxisome proliferator-activated receptor-alpha (PPARalpha) signaling pathways. Growth hormone inhibition of pparalpha transcriptional activity mediated by stat5b. J Biol Chem. 1999;274:2672–2681. [PubMed] [Google Scholar]
  • Zhou YC, Waxman DJ. STAT5b down-regulates peroxisome proliferator-activated receptor alpha transcription by inhibition of ligand-independent activation function region-1 transactivation domain. J Biol Chem. 1999;274:29874–29882. [PubMed] [Google Scholar]
  • Ono M, Chia DJ, Merino-Martinez R, Flores-Morales A, Unterman TG, Rotwein P. Signal transducer and activator of transcription (Stat) 5b-mediated inhibition of insulin-like growth factor binding protein-1 gene transcription: a mechanism for repression of gene expression by growth hormone. Mol Endocrinol. 2007;21:1443–1457. [PubMed] [Google Scholar]
  • Murphy LJ. Insulin-like growth factor-binding proteins: functional diversity or redundancy? J Mol Endocrinol. 1998;21:97–107. [PubMed] [Google Scholar]
  • Barthel A, Schmoll D, Unterman TG. FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab. 2005;16:183–189. [PubMed] [Google Scholar]
  • Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 2004;117:421–426. [PubMed] [Google Scholar]
  • Rotwein P. Contemporary endocrinology: the IGF system. Totowa: Humana Press; 1999. Molecular biology of IGF-I and IGF-II; pp. 19–35. [Google Scholar]
  • Hall LJ, Kajimoto Y, Bichell D, Kim SW, James PL, Counts D, Nixon LJ, Tobin G, Rotwein P. Functional analysis of the rat insulin-like growth factor I gene and identification of an IGF-I gene promoter. DNA Cell Biol. 1992;11:301–313. [PubMed] [Google Scholar]
  • Adamo ML, Ben-Hur H, Roberts CTJ, LeRoith D. Regulation of start site usage in the leader exons of the rat insulin-like growth factor-I gene by development, fasting, and diabetes. Mol Endocrinol. 1991;5:1677–1686. [PubMed] [Google Scholar]
  • Shimatsu A, Rotwein P. Mosaic evolution of the insulin-like growth factors. Organization, sequence, and expression of the rat insulin-like growth factor I gene. J Biol Chem. 1987;262:7894–7900. [PubMed] [Google Scholar]
  • Kim SW, Lajara R, Rotwein P. Structure and function of a human insulin-like growth factor-I gene promoter. Mol Endocrinol. 1991;5:1964–1972. [PubMed] [Google Scholar]
  • Kavsan VM, Koval AP, Grebenjuk VA, Chan SJ, Steiner DF, Roberts CTJ, LeRoith D. Structure of the chum salmon insulin-like growth factor I gene. DNA Cell Biol. 1993;12:729–737. [PubMed] [Google Scholar]
  • Hoyt EC, Van Wyk JJ, Lund PK. Tissue and development specific regulation of a complex family of rat insulin-like growth factor I messenger ribonucleic acids. Mol Endocrinol. 1988;2:1077–1086. [PubMed] [Google Scholar]
  • Woelfle J, Billiard J, Rotwein P. Acute control of insulin-like growth factor-1 gene transcription by growth hormone through STAT5B. J Biol Chem. 2003;278:22696–22702. [PubMed] [Google Scholar]
  • Woelfle J, Chia DJ, Rotwein P. Mechanisms of growth hormone (GH) action. Identification of conserved Stat5 binding sites that mediate GH-induced insulin-like growth factor-I gene activation. J Biol Chem. 2003;278:51261–51266. [PubMed] [Google Scholar]
  • Bichell DP, Kikuchi K, Rotwein P. Growth hormone rapidly activates insulin-like growth factor I gene transcription in vivo. Mol Endocrinol. 1992;6:1899–1908. [PubMed] [Google Scholar]
  • Thomas MJ, Kikuchi K, Bichell DP, Rotwein P. Characterization of deoxyribonucleic acid-protein interactions at a growth hormone-inducible nuclease hypersensitive site in the rat insulin-like growth factor-I gene. Endocrinology. 1995;136:562–569. [PubMed] [Google Scholar]
  • An MR, Lowe WLJ. The major promoter of the rat insulin-like growth factor-I gene binds a protein complex that is required for basal expression. Mol Cell Endocrinol. 1995;114:77–89. [PubMed] [Google Scholar]
  • Mittanck DW, Kim SW, Rotwein P. Essential promoter elements are located within the 5' untranslated region of human insulin-like growth factor-I exon I. Mol Cell Endocrinol. 1997;126:153–163. [PubMed] [Google Scholar]
  • Wang L,Wang X, Adamo ML. Two putative GATA motifs in the proximal exon 1 promoter of the rat insulin-like growth factor I gene regulate basal promoter activity. Endocrinology. 2000;141:1118–1126. [PubMed] [Google Scholar]
  • Wang X, Talamantez JL, Adamo ML. A CACCC box in the proximal exon 2 promoter of the rat insulin-like growth factor I gene is required for basal promoter activity. Endocrinology. 1998;139:1054–1066. [PubMed] [Google Scholar]
  • Wang Y, Jiang H. Identification of a distal STAT5-binding DNA region that may mediate growth hormone regulation of insulin-like growth factor-I gene expression. J Biol Chem. 2005;280:10955–10963. [PubMed] [Google Scholar]
  • Chia DJ, Ono M, Woelfle J, Schlesinger-Massart M, Jiang H, Rotwein P. Characterization of distinct Stat5b binding sites that mediate growth hormone-stimulated IGF-I gene transcription. J Biol Chem. 2006;281:3190–3197. [PubMed] [Google Scholar]
  • Eleswarapu S, Gu Z, Jiang H. Growth hormone regulation of insulin-like growth factor-I gene expression may be mediated by multiple distal signal transducer and activator of transcription 5 binding sites. Endocrinology. 2008;149:2230–2240. [PMC free article] [PubMed] [Google Scholar]
  • Björntorp, P. (1992) Biochemistry of obesity in relation to diabetes. In: KGMM Alberti RA DeFronzo H Keen P Zimmet eds. International Textbook of Diabetes Mellitus 551– 568. John Wiley & Sons Ltd London, United Kingdom. Google Scholar 
  • Björntorp, P. (1992) Hormonal effects on fat distribution and its relationship to health risk factors. Acta Paediatr Suppl 383: 59– 60. CAS PubMed Google Scholar 
  • Rosèn, T., Bosaeus, I., Tolli, J., Lindstedt, G., Bengtsson, BA. (1993) Increased body fat mass and decreased extracellular fluid volume in adults with growth hormone deficiency. Clin Endocrinol (Oxf) 38: 63 Wiley Online Library PubMed Web of Science®Google Scholar 
  • Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r) Cell. 1993;75:59–72. [PubMed] [Google Scholar]
  • Zhou Y, Xu BC, Maheshwari HG, He L, Reed M, Lozykowski M, Okada S, Cataldo L, Coschigamo K, Wagner TE, Baumann G, Kopchick JJ. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse) Proc Natl Acad Sci U S A. 1997;94:13215–13220. [PMC free article] [PubMed] [Google Scholar]
  • Sims NA, Clement-Lacroix P, Da Ponte F, Bouali Y, Binart N, Moriggl R, Goffin V, Coschigano K, Gaillard-Kelly M, Kopchick J, Baron R, Kelly PA. Bone homeostasis in growth hormone receptor-null mice is restored by IGF-I but independent of Stat5. J Clin Invest. 2000;106:1095–1103. [PMC free article] [PubMed] [Google Scholar]
  • Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu JL, Ooi GT, Setser J, Frystyk J, Boisclair YR, LeRoith D. Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest. 2002;110:771–781. [PMC free article] [PubMed] [Google Scholar]
  • Miyakoshi N, Kasukawa Y, Linkhart TA, Baylink DJ, Mohan S. Evidence that anabolic effects of PTH on bone require IGF-I in growing mice. Endocrinology. 2001;142:4349–4356. [PubMed] [Google Scholar]
  • Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–1441. [PubMed] [Google Scholar]
  • Ishizuya T, Yokose S, Hori M, Noda T, Suda T, Yoshiki S, Yamaguchi A. Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells. J Clin Invest. 1997;99:2961–2970. [PMC free article] [PubMed] [Google Scholar]
  • McCarthy TL, Centrella M, Canalis E. Parathyroid hormone enhances the transcript and polypeptide levels of insulin-like growth factor I in osteoblast-enriched cultures from fetal rat bone. Endocrinology. 1989;124:1247–1253. [PubMed] [Google Scholar]
  • Zhao G, Monier-Faugere MC, Langub MC, Geng Z, Nakayama T, Pike JW, Chernausek SD, Rosen CJ, Donahue LR, Malluche HH, Fagin JA, Clemens TL. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology. 2000;141:2674–2682. [PubMed] [Google Scholar]
  • Bengtsson, BÅ, Edén, S., Lönn, L., et al (1993) Treatment of adults with growth hormone (GH) deficiency with recombinant human GH. J Clin Endocrinol Metab 76: 309– 317. Crossref CAS PubMed Web of Science®Google Scholar 
  • Al‐Shoumer, K. A. S., Page, B., Thomas, E., Murphy, M., Beshyah, S. A., Johnston, DG. (1996) Effects of four years’ treatment with biosynthetic human growth hormone (GH) on body composition in GH‐deficient hypopituitary adults. Eur Endocrinol 135: 559– 567. Crossref CAS PubMed Web of Science®Google Scholar 
  • Li, C. H., Simpson, M. E., Evans, HM. (1949) Influence of growth and adrenocorticotropic hormone on the body composition of hypophysectomized rats. Endocrinology 44: 71– 75. Crossref CAS PubMed Web of Science®Google Scholar 
  • Scow, RO. (1959) Effects of growth hormone and thyroxine on growth and chemical composition of muscle, bone and other tissues in thyroidectomized‐hypophysectomized rats. Am J Physiol 196: 859– 865. CAS PubMed Web of Science®Google Scholar 
  • Lee, M. O., Schaffer, NK. (1934) Anterior pituitary growth hormone and the composition of growth. J Nutr 7: 337– 363. Crossref CAS Web of Science®Google Scholar 
  • Goodman, H. M., Schwartz, J. (1974) Growth hormone and lipid metabolism. In: E Enobil WH Sawyer eds. Handbook of Physiology, Part 2 IV: 211– 232. American Physiological Society Washington DC. Google Scholar 
  • Bengtsson, BÅ, Brummer, R. J. M., Edén, S., Rosèn, T., Sjöström, L. (1992) Effects of growth hormone on fat mass and fat distribution. Acta Paediatr Suppl 383: 62– 65. PubMed Google Scholar 
  • Tanner, J. M., Hughes, P. C. R., Whitehouse, RH. (1977) Comparative rapidity of response of height, limb muscle and limb fat to treatment with human growth hormone in patients with and without growth hormone deficiency. Acta Endocrinol (Copenh) 84: 53– 57. Google Scholar 
  • Goodman, H. M., Gorin, E., Honeyman, TW. (1988) Biochemical basis for the lipolytic activity of growth hormone. In: LE Underwood eds. Human Growth Hormone: Progress and Challenges 75– 111. Marcel Dekker Inc New York. Google Scholar 
  • Bonnet, F., Vanderschueren‐Lodeweyckx, M., Echels, R., Malvaux, P. (1974) Subcutaneous adipose tissue and lipids in blood in growth hormone deficiency before and after treatment with human growth hormone. Pediatr Res 8: 800– 805. Crossref CAS PubMed Web of Science®Google Scholar 
  • van Vliet, G, Bosson, D., Craen, M., Caju, NVLD, Malvaux, P., Vanderschueren‐Lodeweyckx, M. (1987) Comparative study of the lipolytic potencies of pituitary‐derived and biosynthetic human growth hormone in hypopituitary children. J Clin Endocrinol Metab 65: 876– 879. Crossref PubMed Web of Science®Google Scholar 
  • Beauville, M., Harent, I., Crampes, F., Riviere, D., Tauber, M. T., Tauber, J. P., Garrigues, M. (1992) Effect of long‐term rhGH administration in GH‐deficient adults on fat cell epinephrine response. Am J Physiol 263: E467– E472. Crossref CAS PubMed Web of Science®Google Scholar 
  • Vernon, R. G., Flint, DJ. (1989) Role of growth hormone in the regulation of adipocyte growth and function. In: RB Heap, C Prosser GE Lamming eds. Biotechnology in Growth Regulation 57– 71. Butterworths London, United Kingdom. Crossref Web of Science®Google Scholar 
  • Harant, I., Beauville, M., Crampes, F., et al (1994) Response of fat cells to growth hormone (GH): effect of long term treatment with recombinant human GH in GH‐deficient adults. J Clin Endocrinol Metab 78: 1392– 1395. Crossref PubMed Web of Science®Google Scholar 
  • Marcus, C., Bolme, P., Micha‐Johansson, G., Margery, V., Brönnegård, M. (1994) Growth hormone increases the lipolytic sensitivity from catecholamines in adipocytes from healthy adults. Life Sci 54: 1335– 1341. Crossref CAS PubMed Web of Science®Google Scholar 
  • Yang, S., Björntorp, P., Liu, X., Edén, S. (1996) Growth hormone treatment of hypophysectomized rats increases catecholamine‐induced lipolysis and the number of β‐adrenergic receptors in adipocytes: no differences in the effects of growth hormone on different fat depots. Obes Res 4: 471– 478. Wiley Online Library CAS PubMed Web of Science®Google Scholar 
  • Watt, P. W., Finley, E., Cork, S., Legg, R. A., Vernon, RG. (1991) Chronic control of the β‐ and α2‐adrenergic systems of sheep adipose tissue by growth hormone and insulin. Biochem J 273: 39– 42. Crossref CAS PubMed Web of Science®Google Scholar 
  • Arner, P. (1992) Adrenergic receptor function in fat cells. Am J Clin Nutr 55: 228S– 236S. Crossref CAS PubMed Web of Science®Google Scholar 
  • Arner, P., Hellmér, J., Wennlund, A., Östman, J., Engfeldt, P. (1988) Adrenoceptor occupancy in isolated human fat cells and its relationship with lipolysis rate. Eur J Pharmacol 146: 45– 56. Crossref CAS PubMed Web of Science®Google Scholar 
  • Davidson, MB. (1987) Effect of growth hormone on carbohydrate and lipid metabolism. Endocr Rev 8: 115– 131. Crossref CAS PubMed Web of Science®Google Scholar 
  • Ottosson, M., Lönnroth, P., Björntorp, Edén S. (2000) Effects of cortisol and growth hormone on lipolysis in human adipose tissue. J Clin Endocrinol Metab 85: 799– 803. Crossref CAS PubMed Web of Science®Google Scholar 
  • Pierlussi, J., Pierlussi, R., Aschcroft, SJH. (1980) Effects of growth hormone on insulin release in the rat. Diabetologia 19: 391– 396. Crossref PubMed Web of Science®Google Scholar 
  • Roupas, P., Ghou, S. T., Towns, R. J., Kostyo, JL. (1991) Growth hormone inhibits activation of phosphatidylinositol phospholipase C in adipose plasma membranes: evidence for a growth hormone‐induced change in G protein function. Physiol Pharmacol 88: 1691– 1695. CAS PubMed Web of Science®Google Scholar 
  • 72 Slavin, B. G., Ong, J. M., Kern, P. (1994) Hormonal regulation of hormone‐sensitive lipase activity and mRNA levels in isolated rat adiposities. J Lipid Res 35: 1535– 1541. CAS PubMed Web of Science®Google Scholar 
  • Sheridan, MK. (1986) Effects of thyroxin, cortisol, growth hormone, and prolactin on lipid metabolism of coho salmon, oncorhynchus kisutch, during smoltification. Gen Comp Endocrinol 64: 220– 238. Crossref CAS PubMed Web of Science®Google Scholar 
  • Dietz, J., Schwartz, J. (1991) Microdetermination of long chain fatty acids in plasma and tissue. J Biol Chem 235: 2595– 2599. PubMed Web of Science®Google Scholar
  • Yang, S., Xu, X., Björntorp, P., Edén, S. (1995) Additive effects of growth hormone and testosterone on lipolysis in adipocytes of hypophysectomized rats. J Endocrinol 147: 147– 152. Crossref CAS PubMed Web of Science®Google Scholar 
  • Lands, A. M., Arnold, A., McAuliff, J. P., Bron, TG. (1967) Differentiation of receptor systems activated by sympathetic amines. Nature 214: 597– 598. Crossref CAS PubMed Web of Science®Google Scholar 
  • Stiles, G. L., Caron, M. G., Lefkowitz, RJ. (1984) β‐Adrenergic receptors: biochemical mechanisms of physiological regulation. Physiol Rev 64: 661– 743. Crossref CAS PubMed Web of Science®Google Scholar 
  • Emorine, L. J., Marullo, S., Briend‐Sutren, M. M., et al (1989) Molecular characterization of human β3‐adrenergic receptor. Science 245: 1118– 1121. Crossref CAS PubMed Web of Science®Google Scholar 
  • Ahquist, RP. (1948) A study of the adrenotropic receptors. Am J Physiol 153: 586– 600. PubMed Web of Science®Google Scholar 
  • Honnor, R. C., Dhillon, G. S., Londos, C. (1985) cAMP‐dependent protein kinase and lipolysis in rat adipocytes. I. Cell preparation, manipulation and predictability in behavior. J Biol Chem 260: 15122– 15129. CAS PubMed Web of Science®Google Scholar 
  • Honnor, R. C., Dhillon, G. S., Londos, C. (1985) cAMP‐dependent protein kinase and lipolysis in rat adipocytes. II. Definition of steady‐state relationship with lipolytic and antilipolytic modulators. J Biol Chem 260: 15130– 15138. CAS PubMed Web of Science®Google Scholar 
  • Corbin, J. D., Cobb, C. E., Beebe, S. J., et al (1988) Mechanism and function of cAMP‐ and cGMP‐dependent protein kinases. Adv Second Messenger Phosphoprotein Res 21: 75– 86. CAS PubMed Web of Science®Google Scholar 
  • Londos, C., Brasaemle, D. L., Schultz, C. J., Segrest, J. P., Kimmel, AR. (1999) Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin Cell Dev Biol 10: 51– 58. Crossref CAS PubMed Web of Science®Google Scholar 
  • Holm, C., Osterlund, T., Laurell, H., Contreras, JA. (2000) Molecular mechanisms regulating hormone‐sensitive lipase and lipolysis. Annu Rev Nutr 20: 365– 393. Crossref CAS PubMed Web of Science®Google Scholar 
  • Brasaemle, D. L., Rubin, B., Harten, I. A., Gruia‐Gray, J., Kimmel, A. R., Londos, C. (2000) Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis. J Biol Chem 275: 38486– 38493. Crossref CAS PubMed Web of Science®Google Scholar 
  • Tansey, J. T., Huml, A. M., Vogt, R., et al (2003) Functional studies on native and mutated forms of perilipins. A role in protein kinase A‐mediated lipolysis of triacylglycerols. J Biol Chem 278: 8401– 8406. Crossref CAS PubMed Web of Science®Google Scholar 
  • Strålfors, P., Björgell, P., Belfrage, P. (1984) Hormone regulation of hormone‐sensitive lipase in intact adipocytes: Identification of phosphorylated sites and effects of the phosphorylation by lipolytic hormone and insulin. Proc Natl Acad Sci U S A 81: 3317– 3321. Crossref CAS PubMed Web of Science®Google Scholar 
  • Egan, J. J., Greenberg, A. S., Chang, M. K., Wek, SA Moos JMC, Londos, C. (1992) Mechanism of hormone‐stimulated lipolysis in adipocytes: translocation of hormone‐sensitive lipase to the lipid storage droplet. Proc Natl Acad Sci U S A 89: 8537– 8541. Crossref CAS PubMed Web of Science®Google Scholar 
  • Anthonsen, M. W., Ronnstrand, L., Wernstedt, C., Degerman, E., Holm, C. (1998) Identification of novel phosphorylation sites in hormone‐sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. J Biol Chem 273: 215– 221. Crossref CAS PubMed Web of Science®Google Scholar 
  • Sztalryd, C., Xu, G., Dorward, H., et al (2003) Perilipin A is essential for the translocation of hormone‐sensitive lipase during lipolytic activation. J Cell Boil 161: 1093– 1103. Crossref CAS PubMed Web of Science®Google Scholar 
  • Smith, PE. (1930) Hypophysectomy and replacement therapy in the rat. Am J Anat 45: 205– 273. Wiley Online Library Web of Science®Google Scholar 
  • Edén, S., Jansson, J. O., Oscarsson, J. (1987) Sexual dimorphism of growth hormone secretion. In: O Isaksson C Binder K Hall B Hökfelt eds. Growth Hormone—Basic and Clinical Aspects 129– 151. Elsevier Science Publishers B.V Amsterdam. Google Scholar 
  • Frohman, L. A., Bernardis, LL. (1970) Growth hormone secretion in rat: metabolic clearance and secretion rates. Endocrinology 86: 305– 312. Crossref CAS PubMed Google Scholar 
  • Jansson, J. O., Albertsson‐Wikaland, K., Edén, S., Thorngren, K. G., Isaksson, O. (1982) Circumstantial evidence for a role of the secretory pattern of growth hormone in control of body growth. Acta Endocrinol 99: 24– 30. CAS PubMed Web of Science®Google Scholar 
  • Björntorp, P., Karlsson, M., Pertoft, H., Pettersson, P., Sjöström, L., Smith, U. (1978) Isolation and characterization of cells from rat adipose tissue developing into adipocytes. J Lipid Res 19: 316– 324. CAS PubMed Web of Science®Google Scholar 
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, RJ. (1951) Protein measurements with the folin phenol reagent. J Biol Chem 193: 265– 275. CAS PubMed Web of Science®Google Scholar 
  • Rebuffé‐Scrive, M. (1987) Sex steroid hormones and adipose tissue metabolism in adrenalectomized and ovariectomized rats. Acta Physiol Scand 129: 471– 477. Wiley Online Library CAS PubMed Web of Science®Google Scholar 
  • Laurell, S., Tibbling, G. (1966) An enzymatic fluorometric micromethod for the determination of glycerol. Clin Chim Acta 13: 317– 322. Crossref CAS PubMed Web of Science®Google Scholar 
  • Dole, V. P., Meinertz, H. (1960) Microdetermination of long chain fatty acids in plasma and tissues. J Biol Chem 235: 2595– 2599. CAS PubMed Web of Science®Google Scholar 
  • Smith, U., Sjöström, L., Björntorp, P. (1972) Comparison of two methods of determining human adipose cell size. J Lipid Res 13: 822– 824. CAS PubMed Web of Science®Google Scholar 
  • Östman, J., Arner, P., Kimura, H., Wahrenberg, H., Engfeldt, P. (1984) Influence of fasting on lipolytic response to adrenergic agonists and on adrenergic receptors in subcutaneous adipocytes. Eur J Clin Invest 14: 383– 391. Wiley Online Library PubMed Web of Science®Google Scholar 
  • Steiner, A. L., Pagliara, A. S., Chase, L. R., Kipnis, DM. (1972) Radioimmunoassay for cyclic nucleotides. II. Adenosine 3′, 5′‐monophosphate and guanosine 3′, 5′‐monophosphate in mammalian tissues and body fluids. J Biol Chem 247: 1114– 1120. CAS PubMed Web of Science®Google Scholar 
  • Steiner, A. L., Parker, C. W., Kipnis, DM. (1972) Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J Biol Chem 247: 1106– 1113. CAS PubMed Web of Science®Google Scholar 
  • McKenzie, FR. (1988) Basic techniques to study G‐protein function. In: G Milligan eds. Signal Transduction—A Practical Approach, Part 2 31– 56. Oxford University Press New York. Google Scholar 
  • Solomon, S. S., Sibley, S. D., Dismukes, J.R. (1991) Growth hormone‐enhanced lipolysis in the spontaneously diabetic BB rat. J Lab Clin Med 118: 99– 105. CAS PubMed Web of Science®Google Scholar 
  • Nam, S. Y., Marcus, C. (2000) Growth hormone and adipocyte function in obesity. Horm Res 53: (Suppl 1), 87– 97. Crossref CAS PubMed Web of Science®Google Scholar 
  • Bahouth, S. W., Malbon, CC. (1988) Subclassification of β‐adrenergic receptors of rat fat cells: a re‐evaluation. Mol Pharmacol 34: 318– 326. CAS PubMed Web of Science®Google Scholar 
  • Granneman, J. G., Lahners, K. N., Chaudhry, A. (1992) Molecular cloning and expression of the rat β3‐adrenergic receptor. Mol Pharmacol 40: 895– 899. Web of Science®Google Scholar 
  • Hollenga, C. H., Zaagsma, J. (1989) Direct evidence for the atypical nature of functional β‐adrenoceptors in rat adipocytes. Br J Pharmacol 98: 1420– 1424. Wiley Online Library CAS PubMed Web of Science®Google Scholar 
  • Lacasa, D., Agli, B., Giudicelli, Y. (1985) Direct assessment of β‐adrenergic receptors in intact rat adipocytes by binding of [3H]CGP 12177. Eur J Biochem 146: 339– 346. Wiley Online Library CAS PubMed Web of Science®Google Scholar 
  • Umekawa, T., Yoshida, T., Sakane, N., Kondo, M. (1996) Effect of CL316, 243, a highly specific β3‐adrenoceptor agonit, on lipolysis of human and rat adipocytes. Horm Metab Res 28: 394– 396. Crossref CAS PubMed Web of Science®Google Scholar 
  • Bojanic, D., Nahorski, SR. (1983) Identification and subclassification of rat adipocyte β‐adrenoceptors using (±)‐[125I]cyanopindolol. Eur J Pharmacol 93: 235– 243. Crossref CAS PubMed Web of Science®Google Scholar 
  • Langin, D., Portillo, M., Saulnier‐Blache, J. S., Lafontan, M. (1991) Coexistence of three beta‐adrenergic receptor subtypes in white fat cells of various mammalian species. Eur J Pharmacol 199: 291– 301. Crossref CAS PubMed Web of Science®Google Scholar 

 •••WANT YOUR QUESTION ANSWERED?•••

Create a free account at www.theprepcoachforum.com and post up your question in the Mike Arnold PED Q&A open threat!

 

 •••SUPPORT OUR PEPTIDE/RESEARCH CHEMS SPONSORS•••
 
(RESEARCH CHEMS) www.maresearchchems.net___use discount code “alex15” to save off your order!
 
(SPECIALTY SUPPS) www.masupps.com___use discount code “alex20” to save off your order!
 
(BEEF) www.skinnybeef.com___use discount code “alex10” to save off your order!
 
•••FIND THE EPISODES•••
 
ITUNES:https://itunes.apple.com/us/podcast/beastfitness-radios-podcast/id1065532968
 
LIBSYN:http://beastfitnessradio.libsyn.com
 
VIMEO: www.vimeo.com/theprepcoach
 
 
 
 •••PREP COACH APPAREL•••
 
https://teespring.com/stores/the-prep-coach-apparel
 
 
0 Comments
Adding comments is not available at this time.